Aggressive Performance
Optimizations for 3D Graphics

Haim Barad (organizer),

Eric Haines, Dean Macrl,
Kim Pallister and Alex Klimovitski

Concept #1: Aggressive
Performance Optimizations

“Dem’s powerful words...”

Could also be called ““Aggressively Pursuing
Optimal Performance™

* Aggressive - use all methods, knowledge & tools
available to achieve...

* Pursuing - It’s an iterative process

® Optimal - there doesn’t exist anything better...
® Performance - make it FAST!

Most SW i1sn’t this bad, but...

¥
r
1
I
i
i
L
Ll
L

-
"

RAISING SPOON TO MOUTH
(A) pulls string (B), thereby jerking ladle (C), which throws cracker (D) past parrot (E). Parrot jumps after cracker,
and perch (F) tilts, upsetting seeds (G) into pail (H). Extra weight in pail pulls cord (1), which opens and lights
automatic cigar lighter (J), setting off skyrocket (K), which causes sickle (L) to cut string (M) and allows pendulum
with attached napkin (N) to swing back and forth, thereby wiping off your chin.

L

2001

Concept #2: “Bad software
slows down good hardware...”

Algorithmic
* Avoid unnecessary work

® Do necessary work in a smart way

Architectural
* Know your target platform

Coding

* Use code wisely

Levels of optimizations

Algorithmic
® Biggest returns by doing it SMART!

* Must be done first

Architectural

® | everage characteristics & capabilities of the
platform

Coding

* Write code, analyze, recode, analyze... squeeze!

2001

Concepts are widely applicable

Not just to Intel” architecture
e Algorithmic

e Architectural
e SIMD

* Memory optimizations

Applicable to all architectures & platforms!
® From server to embedded CPUSs...

*All brands and names are the property of their respective owners.

Schedule

8:30 Welcome and Overview - Barad

8:45 3D Algorithmic Optimizations - Haines

10:00 Morning Break

10:15 Implementations for Bandwidth Reduction - Pallister
11:30 Architecture & Microarchitectural Issues - Barad
12:00 Lunch

1:30 Optimizations Lab - Klimovitski

3:00 Afternoon Break

3:15 Analysis Tools & Lab - Macri

4:25 3D Optimizations for PDAs - Barad

4:55 Summary, Wrap Up, Questions, Feedback - All

2001

Skills needed for labs...

Not too much is needed
® Basic understanding of C++

* Some experience with building and analyzing
applications

Course materials and updates are online
* http://0Optimizations.org

Who’s who...

Haim Barad - Intel
* parad@acm.org

Eric Haines - Autodesk
® erich@acm.org

Dean Macri - Intel
® dean.p.macri@intel.com

Kim Pallister - Intel
* Kkim.pallister@intel.com

Alex Klimovitski - Intel
e Alex.klimovitski@intel.com

3D Algorithmic Optimizations

Eric Haines
Autodesk, Inc.
erich@acm.org

Trends

Moore’s Law: 1.7x increase in CPU speed
per year

Graphics accelerators are 2x to 4x
(Poulton at UNC-CH gives 2.4x per year
since 1986)

Faster than Moore’s Law

109 One-pixel polygons (~10M polygons @ 30Hz)

108— = ATl
Slope ~2.4x/year UNC/HP PixelFlow = ¥ Eaieo
(Moore's Law ~ 1.7x/year) R-Monster

Peak .
Performance 10’ —

(A's/sec) UNC Pxpl5 il

SGI SkyWritgy
106 A

° E&S
Stellar GS1000 F300 lextures

Gouraud Antialiasing
shading
l

I [
90 92 94
Year

Graph courtesy of Professor John Poulton

Why care about faster
algorithms for CG?

Simple answer: never too much speed!
* Screen resolution (4000 x 2500 ?)

® Frame rate (72 Hz)
® Realism (photorealism might be the upper limit...)

* Scene complexity (no upper limit) !

Algorithm or Optimization?

As time goes on, the algorithm Is more
Important than the optimization...

Example: Compare BubbleSort / QuickSort

* BubbleSort will never win (well, almost never...)
no matter how much you optimize the code

However, then code and memory
optimizations can make Qsort even faster!

2001

Application Side Algorithms

Push less across the bus:

e Culling techniques

® Share vertices: strips, vertex buffers

e Compress geometric description (Deering)

e Use other descriptions (images, Beziers,
subdivision surfaces)

e Send simplified models (same amount of
fill, less vertices)

Culling Techniques

“To cull” means ““to select from group”

In graphics context: do not process data that
will not contribute to the final image

The ““group” Is the entire scene, and the
selection Is a subset of the scene that we
do not consider to contribute

Culling: Overview

e Backface culling

Hierarchical view-frustum culling
Portal culling

Detall culling

e QOcclusion culling

Culling Examples

view frustum n detall

backface

‘ occlusion

Backface Culling

Simple technique to discard polygons that
faces away from the viewer

Can be used for:
® closed surface (example: sphere)

*® or whenever we know that the backfaces never
should be seen (example: walls in a room)

Backface culling (cont’d)

Often implemented for you in the API
OpenGL: gl CQul | Face(G._BACK) ;
How to determine what faces away?

First, must have consistently oriented

polygons, e.g., counterclockwise

2 back facing

1

front facing

How to cull backfaces

Two methods (screen space, eye space)

1 2
2 \
1‘
0
0
front back
screen space

View-Frustum Culling

Bound every ‘““natural’ group of primitives
by a simple volume (e.g., sphere, box)

If a bounding volume (BV) iIs outside the view
frustum, then the entire contents of that
BV Is also outside (not visible)

In the APP stage: avoid further processing of
such BV’s and their contents

The Scene Graph
DAG - directed acyclic graph

e Simply an n-ary tree without loops

LR~
A
AN

Internal node=

Can we accelerate view frustum
culling further?

Do what we always do Iin graphics...
Use hierarchies [Clark76] !

Build some kind of tree hierarchically
e Could use the existing scene graph

e Could build a more optimal one
* Tradeoff: speed vs. editability

Example of Hierarchical View
Frustum :

Portal Culling

Images courtesy of David P. Luebke and Chris Georges

Culled 20-50% of the polys in view
SU: from slightly better to 10x

Portal culling example

In a building from above
Circles are objects to be rendered

Portal Culling Algorithm

Divide into cells with portals (build graph)

For each frame:

® | ocate cell of viewer and init 2D AABB to whole
screen

e * Render current cell with VF cull w.r.to AABB
® Traverse to closest cells (through portals)
® Intersection of AABB & AABB of traversed portal

® Goto *

Portal Overestimation

To simplify:

actual portal overestimated portal

Portal Culling Algorithm

When to exit:
* When the current AABB Is empty

* When we do not have enough time to render a cell
(“far away” from the viewer)

Also: mark rendered objects

Source (for Performery):
http://www.cs.virginia.edu/~luebke/

2001

Demo: Surrender’s Umbra Building

QWE
A SD

(and ““spacebar’ for speed)

&Movement

& - &Rotation

Right
mouse

“Menus

2001

Detail Culling

ldea: objects whose projected BV occupy
less than N pixels are culled

This Is an approximative algorithm as the
things you cull away may actually
contribute to the final image

Advantage: trade-off quality/speed

Example of Detail Culling

Images courtesy of ABB Robotics Product, created by Ulf Assarsson

detail culling OFF detail culling ON
Not much difference, but 80-400% faster.

Good when moving e

Projection

Projection gets halved when distance is
doubled

Projection (cont’d)

d (normalized view direction)
>

(eye) ve

(near plane) n

dot(d, (c-v)) Is distance along d
p=nr/dot(d, (c-v)) Is estimation of projected radius
tp2 is the area

Quick Hack Occlusion Culling

Use fog to fade things out as they get far
away - the objects are occluded by the fog,
so no longer have to be rendered.

“Real’ Occlusion Culling

Main idea: Objects that
lies completely
“behind” another set
of objects can be
culled

We present only one
algorithm here; there
are many schemes

Example

O

final image

VISUALIZE tx’s Occlusion Culling
Algorithm

Algorithm (extension to OpenGL):

® Scan convert faces of object, typically bounding
box of complex object, but do not write Z

* Get boolean which says If there was a Z-value from
scan conversion that was closer than that of the
Z-buffer (NVIDIA: get pixels seen count)

* |f seen, render complex object

VISUALIZE tx’s Occlusion Culling
Algorithm (cont’d)

Implications:

* |f an object is occluded, then we gain (hopefully) a
lot of performance since we only scan convert one
Bounding Box (BB) instead of the entire object

e |f BB Is not occluded, then we have to render the
object, and we lose a little performance

Drawing order matters: drawing front-to-
back gives more occlusion

2001

Occlusion culling algorithm

Use some kind of occlusion
representation Og

for each object g do:

If(not Occluded(0Oy,,Q))
render(g);
update(Oy ,0);

end;

end;

Occlusion culling algorithm
example

Process from front to back
Maintain an occlusion horizon (yellow)

Occlusion culling algorithm

example
To process tetrahedron (which is behind

grey objects):
* find axis-aligned box of projection

® compare against occlusion horizon

culled

Occlusion culling algorithm
example

When an object is considered visible:

Add its “occluding power” to the occlusion
representation

Demo: Surrender’s Umbra Urban

-
. QWE <« movement

- ASD

(and ““spacebar’ for speed)

& > &Rotation

Both

buttons
16k buildings, 4k cars '

Polygons vs. Images

Which is better to send to the graphics
accelerator?

Bandwidth Analysis

Polygonal mesh: each vertex shared by 6

triangles. .

Each vertex has a position, normal, and one
texture coordinate pair (at least).

Triangle loop itself needs 3 bytes (for a mesh
with <= 256 vertices)

Bandwidth Analysis (cont.)

Triangle takes:

3*(3 XYZ floats + 3 normal floats + 2 UV
floats) / 6 + 3 bytes for each loop =

19 bytes per triangle
There are 3 bytes per pixel (RGB)

So a triangle must be visible at 19/3 ~= 6
pixels to cost less than sending the pixels.

(idea by Steve Hollasch)

Impostors

For a far away object, render it once and
send down the image as a textured
guadrilateral with alpha transparency.

Nailboards

Nailboards are impostors with relative Z
depth information stored. Allows overlap:

Imposters Nailboards

Images courtesy Gernot Schaufler - 2001

Simplified Models/LOD

Levels of Detail (LOD): when an object is far
away, use a simpler version of it.

Some types of LODs:
® Discrete LODs

e Alpha LODs

e Geomorph LODs

Discrete LODs

Multiple versions of same model.

Distance or screen size ranges are used:

eye

< > < > < >

Rl‘ RZ. RgA

Level-of-Detail Rendering

Use different levels of detail at different
distances from the viewer

More triangles closer to the viewer

LOD rendering

Not much visual difference, but a lot faster

e Use area of projection of BV to select
appropriate LOD

Far LOD rendering

When the object is far away, replace with a
guad of some color

When the object is really far away, do not
render it (detalil culling)!

Drawbacks of Discrete LODs

Each LOD model must be modeled
separately.

Popping often occurs when switching from
one model to another.

Blending between models by having

overlapping ranges may be possible, but
then both models must be rendered.

Alpha LOD

A simple idea: fade out the object as It gets
beyond a certain range, until gone.

The cone

Geomorph LOD

The ideal is to smoothly transition between
two different LODs.

Geomorph LODs do this by associating every
vertex on the more complex model with
some vertex on the simpler model.

As the blend zone iIs traversed, one LOD
model morphs into the other.

Geomorph LODs Example

eye <

Making Geomorphs

Progressive Meshes, a.k.a. Simplification:
starting with a complex model, simplify by
removing an edge in the mesh.

edge collapse

Bad Edge Collapses

Not all edges can be collapsed during
simplification:

edge collapse
T

\ edge

crossing

2001..

Simplification Methods

Each edge Is ranked by its effect on the
model.

000

2001,

Edge Functions

Which edge is least important is a non-trivial
function, and iIs perception based.

* Example: eyes and mouth more important.

Images courtesy Hugues Hoppe

Melax Demonstration

(space-bar to go to next
model, “Enter” to select)

‘onlys: S988 Vertices: 1451 <-* /%5 worph: @.8BH
FPS: 1@.92

Terrain Simplification

One idea is to simplify the model once:

then turn the reduced detall into texture

Images courtesy Michael Garland =

Ulrich Demonstration

left mouse - rotate
right mouse - move
w - wireframe toggle
t - texture toggle

p - follow terrain

-/= - change detall

m - animated move

2001,

Screen Size Determination

Which LOD to use Is related to the number of
pixels It covers. Methods:

Draw the object, count the pixels (dumb).

Use a box around the object, transform to
screen, use area of rectangle.

Find area of box itself on screen
(Schamistieg and Tobler, jgt 1999).

2001

Size Determination Illlustrated

_ldeal: get area
covered by object.

Typical: get 2D
screen rectangle.

Compromise: get bounding box’s area.

2001

Algorithm Overview

Schmalsteig and Tobler (Journal of graphics
tools, 1999):

Determine how many (1, 2, or 3) and which
faces of the box are visible.

Project the vertices of the silhouette edge to
the screen (4 or 6 vertices).

Compute the area from these points.

2001

Example Boxes

Example Boxes

silhouettes

Implementation

For each pair of planes defining the box
along one axis, classify the eye location as
above, below, or between these planes.

3*3*3 = 27 possibilities; using bit codes for
each compare gives a 43 entry table.

For each (possible) entry, give the list of the
4 or 6 silhouette edge vertices.

Compute the area: done!

More Information

The SIGGRAPH 2001 notes for this and other
courses.

Book’s web site

http://www.realtimerendering.com/
Surrender’s Umbra occlusion & portal demos and

manual: http://www.hybrid.fi/umbra/, and at
Criterion’s Renderware booth (look for PVS)

Code for the projected area algorithm is at
http://www.acm.org/jgt/

Morning break

Noise Based Procedural Content
and the Humble Modem

Kim Pallister
Technical Marketing Engineer

Intel Corporation
(Dean Macri, Technical Marketing Engineer, co-author)

kim.pallister@intel.com

Third-party brands and names are property of their respective owners. 2 D B]

Copyright © 2001 Intel Corporation. All rights reserved

Problem Statement
The problem

* Rich, complex 3D scenes have large datasets

* [nternet is poor medium for distributing large datasets

S

2,

The solution 3’)

* Many natural & man-made objects exhibit self-
similarity - maybe ‘algorithmically creatable’

* Use the processor power at the client end to generate
some content procedurally.

What Is ‘Noise’?

Adds ‘imperfection’ to algorithmic content
* makes results more natural-looking

Seeded pseudo-random number generator

* Seeded because we need to be able to re-generate the same
result each time

What is Perlin noise?
e Simply a smoothed version of the same random noise

* The smoothing gets rid of unnatural harsh transitions

Pre- and post- smoothed noise

A3

-"'l'i' f >

Noise as function parameter

Interesting results occur when
noise Is fed into functions

Some simple functions can be
offloaded to HW, others will
need to be done in SW

No substitutes for experimentation

2001

Function Examples

1/f(noise) (fractal sum) - clouds, fog
* Clamping or other post processing is useful too

Application areas

2D
® Base textures

* detail textures
® specularity maps

3D

® Fog volumes

. Texturing

Applications areas:Modeling

Procedurally created models
® Terrain, Trees

Procedurally created scenes

e distribution of trees, people in a
mall, telephone poles

Functions + Noise = Great Results
Height = Noise(X,Y)

Now we can vary
these using noise!

Procedural content demo

+ DRG D3D Appwizard 5ample

Application areas: Animation
and events

Great for character animation
* Head nods, shifting weight, blinking eyes

Environmental things

* When the weather changes

* How often cars drive by

* When does the cable guy show up :-)
Demo

Issues

Numerical error on different systems can have
different results

* Not a big deal for textures

® Could be a big problem for procedural geometry, events,
animation

* Especially in multi-user environements 2 & 3'(\
: : \\1
Algorithm vs artist 4 \

>
* Results may not be what artist intended

* Need to integrate into tools

Call to action

Experiment with procedural content
creation

Don’t limit it only to textures.
Character animation is a natural fit

Resources

Ken Perlins HardcoreGDC talk and animated face demo
® http://www.noisemachine.com
* http://mrl.nyu.edu/~perlin/facedemo/

Modeling & Texturing - A Procedural Approach
® Ebert, David (ed), Morgan Kaufmann,ISBN 0-12-228730-4

Haim Barad’s procedural texture article
* www.gamasutra.com/features/programming/19980501/mmxtexturing_01.htm

Intel Developer Services articles
* www.intel.com/ids/

Game Programming Gems 2
® Deloura, Mark et al, Charles River Media, ISBN 1-58450-054-0

2001

3D API Usage and Optimizing for
Variable Platforms

Kim Pallister
Technical Marketing Engineer
Intel Corporation

kim.pallister@intel.com

Agenda

Why multi-platform optimization
Common platform performance issues
Design guidelines

APl usage

Profiling

Call to action

Why Variable Platform
Optimization?

Software increasingly needs to by multi-
platform

e Multi-platform games, browser plug-ins, etc

Some platforms are variable in nature

® Especially true for PC: CPU horsepower, ISA,
memory, graphics subsystem

Need to have applications that run well
across the board and/or adapt to target

2001

Performance and the API

High performance used to mean hand coding top to
bottom, but...

Multi-target apps foster APl dependency

API provides baseline functionality
* Some of that functionality may be emulated

APl may have multiple methods for accepting data
& commands

* Not all of which are created equal!

So the API will abstract the target?

Not quite...

Platform architectures may vary so much
that app architecture & APl usage change

Examples:
* PC application vs PlayStation2* application

* Shader/Materials on PC platform
The API can only do so much...

*Third-party brands and names are property of their respective owners

Sub-optimal performance causes

Assuming the general from the specific
® (Works on the programmers machine, let’s ship it)

Poor Design

Poorly understood system architecture (design)
API Issues:

* Start-up code done per frame
* Functionality misunderstanding
* Broken concurrency
* Poor data flow/data copies, Lack of batching
® Excessive state changes
Coding for the coder, not the HW/API

Design Guidelines

Know your platform architecture and variability
* Make high level design decisions based on this

* How much can the API abstract? Where are different code
paths needed?

Know your API’s functionality

* What’s fast? What’s slow? What works well on each platform
and how does it vary across platforms?

Know your limits

APl Issues: Don’t do it iIf you don’t
need to

Start-up code should be done...
® (Hint: not per frame)

Creation of resources should be done ahead of time
* Vertex Buffers/Index Buffers

® Texture Surfaces
* \ertex/Pixel Shaders

e State Blocks

APl Issues: Functionality

Poorly understood API functionality

* What are the optimal functions? How do/could they
work?

* What path does the data take?
® E.g. How much of a VB transformed on HW vs SW?

Assumed API functionality
Lack of trust in APl functionality
Untested platforms

APl Usage Issues: Concurrency

Graphics subsystem operates in parallel with
host CPU

* As long as one isn’t waiting for the other

Typical causes for loss of concurrency
* Trying to read data back from graphics device

* Accessing shared resources at the wrong time

APl Usage Issues: Concurrency

Avoid touching vidmem bits (locking)
* Forces CPU to idle while command queue flushed

Hand off vertex data in large chunks
e definitely over 100 verts unless unavoidable

e diminishing returns over 2000 vertices

Beware API calls that can stop concurrency
® e.g. GetDC in DirectDraw will issue a lock

® (GDI i1s always a no-no)

| usage Issues: Data
anagement

Natural assumption that app can do best job
of managing vertex & texture memory

® This is increasingly false!

Sub optimal APl usage will cost you

e Extra copies of data will result in performance &
memory overhead

e Data may not be in the optimal place for target
system (e.g. optimized sysmem VB’s)

| usage Issues: Data
anagement

Allow the API & driver to manage memory for you
* Yes, you can find ways to outperform the API...

e ..they’ll work on your system but break on others

Use cleanest semantics for data hand off

® e.g. Direct3D: Index/Vertex buffers, OpenGL: Compiled
vertex arrays

* Make sure to use the right creation flags!
* Use indexed prims, use strips where you can

2001

*Third-party brands and names are property of their respective owners.

APl usage models: General
optimization tips

Above all, maintain concurrency
Avoid data copying and mismanagement

Batch data at 100-2000 verts per call as much as
possible

Avoid state changes, sort by state change
Avoid redundant state changes
Never Get() anything

* View HW as one-way

Use Clear(), not tri’s

State changes costs
(most to least costly)

VS/PS change
VB/FVF/VA change
Texture change
Render state setup \/Svfrlzrri
SetRenderTarget (Direct3D only) bossible
New matrices

Fog table states
Update light states
Turning lights on/off

*Third-party brands and names are property of their respective owners

SW vs HW

Some functionality may be found in HW on some systems,
SW in others

* Some things in SW may still be fast (e.g. Vertex Shaders under
DirectX8)

Trying to theorize about HW performance based on SW
assumptions will rarely work

® e.g. Vert & Texel caches throw off BW calculations
® e.g. Texture swizzling
* No substitute for testing (IHVs can help here!)

Use APl & HW friendly methods

® E.g. DrawPrimVB vs DrawPrimUP
2001

*Third-party brands and names are property of their respective owners.

Tools for APl Performance
Analysis

Roll your own

e Offers the best control over profiling, potential for low
overhead

e | ots of work, could introduce error

Off the shelf

* Several exist
* Minimal overhead added by profiler

* Robust Ul and analysis tools mean testing can be done by
non-programmers

2001

Limits of Profilers

Where time is spent isn’t necessarily where the
bottleneck is

* Runtime could be spinning while waiting for HW

Understand difference between
fillrate/throughput/CPU limited

* May need to modify your tests to determine cause

Is the bottleneck In the runtime or the way that
you use It?

LAB Exercise

Profiling APl Usage of a Sample 3D
application

Q)

b
&%’ Call to Action

Have faith in the APl & drivers
e . .But don’t trust them

Test often! (Not only 2wks before shipping!)
* Compare to past results throughout

Understand what’s under the hood

* Understanding API data & program flow allows spotting of potential
problems

* Helps you design correctly
® Use the tools, talk to the vendors

Profile as many permutations as possible
* No substitute for profiling on the target system

® Leverage available tools

Resources
Microsoft Direct3D FAQ

* msdn.microsoft.com/library/techart/dxfaq.htm

OpenGL performance notes
* www.opengl.org

Real Time Rendering
e Moller, Haines - ISBN 1-56881-101-2

Intel Developer Services
® http://www.intel.com/ids/

Resources for Profiling Tools

Intel Vtune
* http://developer.intel.com/vtune/

3D Pipeline GLAnalyze
® Supports OpenGL applications

* http://www.3dpipeline/products/gl/glanalyze.htm

Nvidia stats driver (registered developers only)
® http://www.nvidia.com/developer.nsf

Intelligraphics Intellibench
® Supports DirectX (older versions only)

® http://www.intelligraphics.com/ibench.htm

Bandwidth reduction: Compact
culling and Bezier tessellation

Haim Barad
Staff Engineer
Intel Corporation

barad@acm.org

Compact Backface Culling

Highlights
* Reduce the storage/bandwidth required for facet
normals by 50%

* Perform culling at front-end in object space

* Optimized for SIMD computation

Efficient Culling

Store facet normals to avoid calculations on
the fly

* Sign check of dot product with viewing vector

* Require positions of polygon and view as well as
facet normal

(P-V)e N

Storage requirements

struct {
float Xx,vy, z;
} Vector;

struct {
Vector position; // position on polygon - 12 bytes
Vect or nor mal ; // normal of polygon - 12 bytes
WORD pl, p2, p3; //indices to vertex pool — 6 bytes
WORD stub; // needed to avoid 2 byte alignnment
/Il stalls and filling a cache |ine.
} faceData; // total size 32 bytes

Phase 1: Object space culling

Front end culling is faster
* 10-20% frame rate boost on many apps

* Eliminate polygons BEFORE transform

Transform viewer Into object space
* Facet normal is precalculated

® Position of normal iIs one of the vertices

Rewrite culling test

Culling test can be rewritten:

(P-V)e N

Precalculate!!!
Don’t need P 1
-

Compact Representation

Store normal In fixed point
e Normal is “normalized” between -1 and +1.

® Represent normal in range from -32767 to +32768

* Only 2-byte representation instead of 4

Compact Storage Requirements

struct {

float pn; // precal cul ated position*nornmal

Il 4 bytes
signed short normal [3]; // nornmal of pol ygon
/] 6 bytes
WORD pl, p2, p3; // indices to vertex pool
/] 6 bytes

} faceData; // total size 16 bytes

Only half the storage requirements!

2001

Modified Algorithm

for (each face in the array){

/| Expand the nornmal back to float fromits fixed-point

/[l Calculate face->tn — (face->normal * Vo)

/'l Previously we calculated (P-V)*N, but we have tn = P*N

/'l (precal cul ated) we now need to calculate (tn — V*N)

I1f (result <= 0){ // polygon is front-facing
/| face->pl, face->p2 and face->p3 are indices to the
/] vertex pool. Use themto mark the appropriate
/[l vertices "visible"

Performance Advantages

Front-end culling
Sequential memory accesses
e Data structures can be prefetched
Data structure for culling is half the size

Sample code available on Internet at
Gamasutra website (gamasutra.com)

Performance Results

Ratios of

* A = compact scalar/non-
compact scalar

* B = compact SIMD/non-
compact SIMD

* C = compact
SIMD+prefetch/non-
compact SIMD

Spherical Object

tris

Z10]0

6.4K

20K

A

1.15

1.2

1.2

B

1.45

1.6

1.7

2.3

2.7

2.7

Bezier Surface Tessellation

Growing importance because of Internet
We’ll concentrate on 4x4 patches
Fits 4-wide SIMD computation

3 3

S(S’t) - ZZ I:)i,j Bi,n (S)Bj,m (t)

i=0 j=0

Bezier patch: 4x4 grid

Preserve G1 Continuity

= SN

—

Collinear control points

along common edge..
2001

Pipeline configurations

SW T&L

HW T&L

Transform control points

Tessellation

!

Tessellation

!

Per vertex lighting

!

Rasterization

U

!

Transform vertices

]!

Per vertex lighting

]!

Rasterization

A little math...

3 3

S(S t) ZZPIJ |n(S)BJm(t)

1=0 J=0

~ 0S(s,t) y 0S(s,t)

S S, 1) =
Normals Normal () OS at

ZiP'JB'n(S)BJm(t) ZZPIJBII’](S)B (t)

i1=0 j=0 i=0 j=0

And the basis functions...

B,,(U) =(@-u)’ B; 5 (U) =-3(1-u)’
B, ;(u) =3u(l-u)* B, ,(u) =3(1-u)* -6u(l-u)

B, ;(u) =3u’(1-u) B, ;(u) =6u(l—u)-3u’
B,,(U) = u’ B, (U) = 3u*

Tessellation: 3 basic steps

1. Take samples of the parametric surface

* We use uniform sampling
® These techniques work for any method

2. Connect samples into triangles

® Generate indices list
3. Generate tessellated surface vertices

® (Generate vertex structures

® (Generate In screen space - save transform work!
— Valid for Rational Bezier surfaces

2001

Data Structures & Classes

CBezierTessellation Class
* Holds indices data for current tessellation level

* Holds precalculated values for B and B’

CBezierSurface & CBezierPatch Classes
® Connects patches to form complex surfaces

SIMD implementation

Evaluate surface position & normal for four
sample points simultaneously

For improved cache locality, use
BO,B(SO)1 BO,B(Sl)’ BO,3 (SZ)’ BO,B (83)1
Bl,B(SO)’ Bl,B(Sl)’ Bl,3(52)1 Bl,3(53)1
B,3(S0): B,3(S1): B, 5(S,), B, 5(S3),
BB,B(SO)’ BS,B (81)1 BB,B (SZ)’ BB,S (83)1

Process 4 at a time!

SIMD implementation (cont.)

Use 32 FP numbers (four cache lines)
® 4 s values x 4 basis + 4 t values x 4 basis

* Use prefetch to ensure no cache misses

Control points are expanded four times
® Generates four vertices in parallel

Position calculation

Convert to rational Bezier surfaces
® Persistent in projective transformations

I,] Bi,n (S) Bj,m (t)

n m

WI iBi,(s)B; ()

Code detalls...

Sources available in supplemental notes &
Gamasutra website (gamasutra.com)

Fully coded in C++ using SIMD classes

Performance results

Bezier teapot object
* 306 control points

e 32 patches

Tessellate position
One directional light

Pentium® Ill processor @
200 MHz

64 1600 33856
of triangles

Bl egacy B SIMD

2001

Power Programming
with Streaming SIMD Extensions 2
Labs

Alex.Klimovitski@intel.com
Tools & Technologies Europe

Now We Will:

e Explore the usage modes for the Streaming
SIMD Extensions 2 (SSE2)

e Jump-start using SSE / SSE2

e Port from x87 to SSE FP

e Enhance SSE FP code with SSE2 Integer

e Use SSE/SSE2 Intrinsics and Vector Classes

Our Agenda

Port x87-intensive code to SSE FP
Prepare data for SSE with SSE
[De]Compress data with SSE2

Summary

Qur Tools

Microsoft* Visual C++* 6.0
Intel Compiler

2001

*Other brands and names are the property of their respective owners

Lab Directory Structure
Tl
‘i SSE2Labs

Common Framework

Projects,
Assignments,
Solutions

Our Framework

ConCm. €
mai n()

Our Framework, Main File

ConCrm\ ConCm. ¢

/] Testl

(); // allocate & initialize menory
ReadTscSync(&cA) ;
for (i = 0; I < g nTestCount; i++)

(); // do the test
ReadTscSync(&cB) ;
cl = cB - CcA

[/ simlar for Test?2
PrepTest2(); // allocate & initialize nmenory
ReadTscSync(&cA) ;
for (i = 0; I < g _nTestCount; | ++)
Test2(); // do the test
ReadTscSync(&cB);
c2 = cB - CcA;

Finalize(); [// check the results, free nenory

[/ conpare the tinme for Test2 vs. Testl
print((c2 - cO / (cl1- cO * 100.0);

Facet Normal-Based Triangle

Facet Normal:
N=(A-C)x(B-C)
View Vector:
V=C-E
Cull Test: o Wwe neet \

t={VjeN for Ve -
if t <= 0 then PASSED
Modified Cull Test:

Our Agenda

Port x87-intensive code to SSE FP
Prepare data for SSE with SSE
[De]Compress data with SSE2
Summary

What Is SIMD? - Single
Instruction, Multiple Data

Scalar processing SIMD processing

* traditional mode

® one operation produces
one result

* with SSE / SSE2

® one operation produces

multiple results

SSE / SSE2 SIMD Data Types
Anything that fits into 16 byte!

4x floats
2x doubles
16x bytes
8x words
4x dwords
2x qwords

1x dqword

Let’s Get Started!

Open TriQul I\ TriCQull.dsw, file TriCull.cpp

Consider data declaration & initialization

Test 1() uses x87 prepfninfo(), tricull ()
functions and FNI NFOstructure

Test 2() uses prepfni nfo_ps_A() and
tricull ps() functions, FNI NFO PS struct

fni nf of 1] f ni nf of O]

4 NTH

cn cn

Our task: Implement SSE versiontri cul | _ps()!

Step 1: Defining Data Structure
for SSE Culling

We’ll be processing four triangles in parallel

Define appropriate st ruct FN NFO PS
b,cIn prepfni nfo_ps_A(), initialize fni nfo_ps
fromtriinfo

e Hint: Usei >> 2 to index the structure,
| & 0x3 to index the element

fni nfo_ps| 0]

64 48 32 16 0
cn3cn2cn1cn0 RZS)|| MZ2|| RZ

SSE / SSE2 Intrinsics
SSE/SSE2 data types as C data types

_ ml28 - fourfloats _PpS
_ mL28d - two doubles _pd

. any i nts _epi 8..epi 64
28| - In 16 bytes ~s1128 A

e SSE/SSEZ2 Instructions as C functionsé

c = _mmadd ps(a, b);

stan‘darV it ™~ operand type :

Step 2: Implementing Culling
Test with SSE

Follow comments starting with // ***
a, b. Prepare SSE eye-vector coordinates
c. Define the loop limit and increment
* Hint: we are looping thru four-packed normals

d. Load four-packed normal components

e. Calculate four-packed dot product of the normals and the
eye vector

f. Perform the test, convert results to BOOLSs

g. Write out the results
h. Try streaming results out

Performing Test with SSE

We’re getting SSE masks (all 1s or Os)
The test should generate BOOLs. How?

C°N| cn3 H cn2 H cni H cno ‘

1111111,0000000(1111111} 0000000

mask 1 [C0e00OIH0ELELOII0EOEOOIINIOOOO0H

result [BBBEEEAY 0000000 0000000

Defining SSE Bit Masks

No valid f | oat with bit pattern needed?

Define aligned static array of four integers
Load It at runtime as packed f | oat s

® #define CONST_INT32_PS(N, V3,V2,V1i, VO) \
static const MM ALIGNLG Iint ##N]=\
{VvO, V1, V2, V3};/*little endian!*/ \
const F32vec4d N = mmload ps((float*) ##N);

[/ usage exanple, nmask for elenents 3 and 1:
CONST | NT32_PS(nmask31, ~0, 0, ~0, 0);

Use the full power of C/C++ preprocessor! m"ﬁ—

2001

Our Takeaway from Porting to SSE

SSE/SSE2 boost performance of FP code
Use SSE/SSE2-friendly data structure

SSE/SSE2 Intrinsics produce efficient code
without assembler

SSE/SSE2 compare & logic operations replace
branches

Our Agenda

Port x87-intensive code to SSE FP

Prepare data for SSE with SSE

[De]Compress data with SSE2
Summary

SSE/SSE2 Vector Classes

C++ wrap fora nl28x data types and
corresponding Intrinsics

Intrinsics Vector Classes
o

a=(a+Db) * c;

fourfloats F32vec4

two doubl es F64vec?2

anyints | 8vecl6...
in 16 bytes | 64vec2

.
~ F32vec4 a, b, Cig

Scalar Data Preparation Problem

Move pr epf ni nf o() function into Test 1() and
prepf ni nfo_ps() into Test 2(), compare
performance

Problem 1: Scalar filling of FNI NFO_PS structures is
slow

Problem 2: Memory stalls possible

scalar data
11,43 r1,42 ¢l r1,¢0 operands

scalar store
ISINIVZNIVAINIAYS memory

- J
memory stalll<<—_J packed load
SSE operand

P
=

Step 3: Preparing SSE Data with SSE

a. Implement vect sub() , dot pr oduct (),
crossproduct () using F32vec4 Vector Class

b. Assume we have TRI | NFO oF32vec4() .
Implement pr epf ni nf o_ps() using F32vec4

C. In PrepTest 2(), use prepfninfo_ps_B()
Instead of prepfninfo_ps A()

X87 code Is easy to port with C++ Vector Classes!

Now what about TRI | NFO oF32vec4() ?

2001..

Data Swizzling Problem

e The way we have it: array of structures
triinfo[3] triinfol2] triinfo[l] triinfo[O]

C (G o |10 (10N oDk | 1z [l fe

e Task for TRI | NFOGt oF32vec4() : restructure
(“swizzle”) the data in minimal number of
operations and preventing memory stalls

SSE helps implement optimal - CMCGRAFPH
data swizzling! 2001,

Solving Data Swizzling Problem
with SSE

Treat four t ri I nf os as nine SSE operands
Combine and reshuffle matching elements

triinfo[3] K triinfo[1l] triinfo[O]

O O 4[EA A Al e o Cid g | oz eI Gz JeAY 6 OV 04 e 2y el % |10z JoNy Jokk | 2z [E felbi

139 1 e 9

)) <)))

0,4 2 2y 21

0

Combining and
Reshuffling

AND with masks n0..n88
OR the results
Reshuffle to right order

ay = v[0] &nm | v[2] & nR
| v[4] & nB | v[7] & nO;

RESHUFFLE(ay, O, 3,2,1);:

aVy2|l avdl & aVS : :
"ﬂf"’y‘f "'yof 2 Compact notation using
RESHUFFLE(O, 3, 2, 1) Vector Classes!

ay-’jf a.yZ[aylf ELYO’ - 2001 Lk

Step 4: Implementing Data
Swizzling with SSE

e Work on function TRI | NFCt oF32vec4()

a. Define masks nD..nB using CONST | NT32_PS macro

b. Cast array of TRl | NFOSs to array of F32vec4s

c. Mask out and combine matching elements

d. Reshuffle the results to the right order (where needed)
e Build, run, compare performance

e Try defining | NT32_PS constants as static

Our Takeaway from Preparing
Data with SSE

e Use SSE/SSEZ2-friendly data structure

e To modify data structure on-the-fly, use
SSE/SSE?2

e SSE/SSE2 Vector Classes are ideal to code
arithmetical and logical operation

Our Agenda

Port x87-intensive code to SSE FP
Prepare data for SSE with SSE
[De]Compress data with SSE2
Summary

Solving Data Amount Problem

How to reduce memory consumed by the facet normal
components?

Special property of normal components:
abs(nx, ny, nz) <= 1.0
They can be easily mapped to short range!

__inline short float2short(float f) // scale & conpact

{

}
This saves 50% of storage space!

return (short)round(f * SHRT_MAX);

But how will we get our f| oat s back?

With SSE2, of course!

Changing the Data Structure to
Use shorts

Departure from 16n struct size can cause misalignment and
cache line splits
fninfo_ps[1] f ni nfo_ps[0]
N N

32 24 nz 16 ny s 0

48
[1a] 2] 1 o] ERZIEINOL <] cn2l ol ond [Ef2labo][=] 2] 2 o] Ef2iC

Misalignment!
f ni nf o_ps[4]

184 nz 17e ny 168 nXx 160

Step 5: Data Structure for Facet

Normals, Padded
Follow comments starting with // ###

e Implement new version of FNI NFO PSto
use packed shorts

e To avoid misalignments and cache line

splits, add padding

f ni nfo_ps|[O]

32 pad 24 nz 16 ny

SSE2 Integer 128-bit Types and

Intrinsics
e All types are architecturally equivalent and
freely interchangeable

e One intrinsic data type il 28i

e Operation type defined by intrinsic’s suffix

DOWORD . mm XXX si 128

QWORD QWORD _m_XXx_epi 64

OR B DNERDIDNORBIWeRE, _ MM XXX_epl 32

Wb wib A Wb WA TN XXX __epl 16

g[8k All integer types from DQWORD to BYTE 2

Step 6: Converting Packed
fl oat s to Packed shorts

Inventory
® There iIs a conversion 4 32-hitfl oats > 41 nt s

e ml28i data type holds 8 shorts

Action Plan

1.convert packed f | oat s (nx,ny,nz) to
packed i nt s (inx,iny,inz)

2.pack 4+4 i nt s (inx,iny) into 8 shor t s and store

3.pack inz with itself and store low 4 shorts

Implement in prepf ni nfo_ps_B()

~Intrinsics are more flexible than Vector
Classes when dealing with- multiple

Restoring Packed f | oat s from
Packed short s, Plan

Inventory
e _ nl28i data type holds 8 shorts

® There is a conversion 4 32-bitints > 4 fl oat s

Action Plan
1.load 8 short s (nx, ny)

2.unpack (sign-extend) lower 4 shortsto4ints
3.convert to 4 f | oat s (nx)

4.unpack higher 4 shortsto4ints

5.convert to 4 f | oat s (ny)

6.load last 4 shorts (nz) -- _nmm | oadl _epi 64()

7.unpack to 4 i nts, convertto 4 fl oats (nz)

Restoring Packed f | oat s from
Packed shorts

y/4 y/4 y/4 y/4 y/4 y/4 y/4
oooo|| oood| oood| oood| oooo|| oood| oood| 0000 |

mm_cnpgt _epi 16()

1111 OOOCH//111][1111[
_mm unpackl o_epi 16()
(_mm unpackhi _epi 16())

.
“H““Hm;

_mm cvtepi 32_ps()

HeaL(YS rfloa't(yZ) rfloa.'t(yl)[ﬂoat(y@)’ flozit(3)| floai(2) | floaiCal) | floai(<0)

Converting to 8 packed f | oat s at once!

Rescaling

Now that we have our f | oat s back...

Should we rescale every nx, ny, nz by
1. 0f / SHRT MAX ?

Suggest a better solution that
* takes care of rescaling

® doesn’t require multiplication for every normal

* Hint: Look at the cull test algorithm, the dot
product formula

Step 7: Restoring Packed f | oat s

Follow comments starting with // ###

a. Define a zero _ nl28i constant

b. Define a rescaling const, 1. Of / SHRT MAX
c. Rescale eye vector components

d. Declare ml28i variables

e. Load 8+4 packed short components

f. Unpack to i nt s with sign-extension

g. Convertto fl oat s

Build (F7) and run (Ctrl+F5)

Our Takeaway from
[De]Compressing Data

e For ultimate performance, look for a way
to compress your data

® For on-the-fly [de]Jcompression, use SSE2

e For rapid port and development, use
Vector Classes

® For data manipulation and conversion, use
SSE/SSE2 Intrinsics

Our Agenda

Port x87-intensive code to SSE FP
Prepare data for SSE with SSE
[De]Compress data with SSE2

Summary

What If...

What if we were to save triangle usage flags as:
°* shorts?

° BYTES?

® bits?

How could we keep count of triangles that passed
the test?

Propose a data structure for compressed facet
normals and C = N that doesn’t need padding

2001

Mask Hashing: Movemask

JAN 0.9 0.9 -5.0 5.0

F32vec4 nmask cnplt(a, b);
| nt bithash = nove nmask(mask) ;

[/ bithash = 0..15

sw tch (bithash) {
case 0: // handle f-f-f
case 1: // handle f-f-f
/[l handl e ot her cases

case 15: // handle t-t-t-t

- f
-1

Test Passed Counting

EO)OOO ‘ 11111 H O)OOO ‘ 1 111

movemask

static const int bitcount| 16]
0, // 0 == 0000
1, // 1 == 0001
1, // 2 == 0010
2, I/ 3 == 0011

4 [/ 15 == 1111

'
F32vecd4 mask = cnplt(a, b);
npassed = bitcount[nove mask(nmask)];

Our Summary

® Get performance boost with SSE / SSE2 !
® Port x87 and MMX™ code to SSE / SSE2 !

® For FP code, use SSE / SSE2 FP (both single and double
precisions availablel)

® For integer code, use SSE2 Integer

e For rapid port, use Vector Classes, for data manipulation
and conversion, use Intrinsics

e Employ fast data [de]compression with
SSE / SSE2!

® | et Intel® Compiler assist you!

SSE/SSE2 Toolbox
Solutions for
Real-Life SIMD Problems

Alex . Klimovitski@intel.com
Tools & Technologies Europe
Intel Corporation

Agenda

Exploiting Parallelism

Data Restructuring

Data Compression
Conditional Code with SIMD
Ssummary

Bonus Folls

Agenda

Exploiting Parallelism

Data Restructuring

Data Compression
Conditional Code with SIMD
Ssummary

Bonus Folls

Introducing SIMD: Single
Instruction, Multiple Data

Scalar processing SIMD processing
* traditional mode * with SSE / SSE2

® one operation produces ® one operation produces

one result multiple results

SSE / SSE2 SIMD Data Types

Anything that fits into 16 byte!

4x floats
2x doubles
16x bytes
8x words

4x dwords

2x qwords

1x dqword

Matrix by Vector Example
HEEN -

M by V Code

® static float ni4][4]; o
® O
® for (int i =0; I < ARRAY COUNT; i++) { ®
® float x = xi[i]; o
® float y = vyi[i]; o
® float z = zi[i]; o
® float w=wil[i]; =
xo[i] =x * nmMO][O] +y * nO][1l] + z * nO][2] +
w * O] [3];
yo[i] = x * nf1][O0] +y * m1][1] + z * n1l][2] +
w* 1] [3];
zo[i] =x * mM2][0] +y * mM2][1l] +z * nmM2][2] +
w* ni2][3]
wo[i] = x * n3][0] +y * mM3][1] + z * n3][2] +
w* n3][3];
}

M by V with SSE, 15t Try

M by V with SSE, 2"d Try

Same Operation -

Just Four at A Time!
B -

Remember Memory
Ao0S: Array of Structures

/ \/ \ A0S defeats SIMD
aosl| n

SOA: Structure of Arrays

’ soal n. m ax SOA provides for
soal n. m ay maximum parallelism!

Hybrid Structure Hybrid is also more

-fri I
Bt Al memory-friendly!

Remember Alignment, too!

SSE/SSEZ2 loads/store expect data aligned on
16-byte boundary; otherwise crash!

There are unaligned load/store versions, but
these are significantly slower

16-byte aligned!

__declspec(align(16)) float a[N]; // static or auto
Iint* b = mmmalloc(N * sizeof(int), 16); // dynamc
~mm free(b);

F32vecd4 c[N/ 4]; I/ Vec O asses are al ways aligned

M by V Code with SSE

® static F32vec4d q[4][4]; O
® o
® for (int i =0; i < ARRAY_COUNT; i += 4) { ®
® F32vec4 x = (F32vecd4&) xi[i]; o
® F32vec4 y = (F32vec4&)yi[i]; o
® F32vecd4 z = (F32vec4&) zi[i]; ®
® F32vecd4 w = (F32vecd4& w [i]; ®
® (F32vec4& xo[i] = x * g[0][0] + vy * g[O][1] + ®
‘ z * q[0][2] + w* @g[O][3]; ®
(F32vecd4&yo[1] =x * q[1][0] + vy * q[1][1] +
z * q[1][2] + w=* q[1][3];
(F32vec4&)zo:i: =x * q[2][0] + vy * q[2][1] +
z * ql2][2] + w=* q[2][3];
(F32vec4&wo[i] = x * q[3][0] + vy * q[3][1] +
z * q[3][2] + w= q[3][3];

Same Code as Scalar -

Just Four at A Time!

® static float ni4][4]; o
® o
® for (int i =0; I < ARRAY COUNT; i++) { ®
® float x = xi[i]; o
® float y = vyi[i]; o
® float z = zi[i]; o
® float w=wl[i]; ®
xo[i] =x * nMO0][O] +y * nO][1l] + z * nfO][2] +
w * 0] [3];
yo[i] =x * nf1][O0] +y * m1][1] + z * n1l][2] +
w* 1] [3];
zo[i] =x * n2][0] +y * mM2][1] + z * nf2][2] +
w * ni2][3]
wol[i] = x * n3][0] +y * mM3][1] + z * nM3][2] +
w* n3][3];
}

M by V with Perspective

Correction Code

® for (int i =0; I < ARRAY_COUNT; i++) { ®
® float x = xi[i]; o
® float y = vyi[i]; @
® float z = zi[i]; o
® float w = wi[i] o
® o
® float w = 1.0/ (x * n[3][0] +y * n{3][1] + ®
z * n{3][2] +w* n{3][3]);
xo[i] =w * (x * n{0][0] +y * n{O][1] +
z * n{0][2] +w* n{O][3]);
yo[i] =w * (x * n{1][0] +y * n{1][1] +
z * n{1][2] +w* n{1][3]);
zo[i] =w * (x * n2][0] +y * n2][1] +
z * n{2][2] +w* n{2][3]);
wol[i] = w;

M by V with Perspective

Correction SSE Code

for (int i = 0; i < ARRAY COUNT; i += 4) {

F32vec4 x = (F32vec4& xi[i];
F32vec4 y = (F32vec4&)yi[i];
F32vec4 z = (F32vecd4&) zi[i];
F32vec4 w = (F32vecd4& wi[i];

F32vec4d w = rcp_nr(x * q[3][0] +vy * q[3][1] +
z * q[3][2] +w™ q[3][3]);

(F32vec4&) xo[i1] = w * (x *
+z * q[0][2] + w * [O]
(F32vec4& yo[i] = w * (x *
+z * g[1][2] + w* q[1]
(F32vec4&) zof i] w * (X ¥
+z * g[2][2] + w?™* q[2]]

} (F32vecd&) wol 1| Eagy per-component processing! [

0] +y * q[O][1

0] +y * q[1][1

0] +y * q[2][1

w'n 'w'n 'w'n

“SIMDizing’ The Matrix

® void FourFl oat s2F32vec4(F32vec4* v, const float* f) @
® ©
® v[0]=_mmload ps(f); ®
® v[1l]= mmshuffle ps(v[O],v[O], MM SHUFFLE(1,1,1,1));@®
® v[2]= mmshuffle ps(v[O],v[O0], MM SHUFFLE(Z2, 2,2,2));®
® v[3]=_mmshuffle ps(v[O0],v[O], MM SHUFFLE(3,3,3,3));®
® v[0]=_mMmshuffle ps(v[O],v[O], MM SHUFFLE(O0,0,0,0));®
}

static MM ALIGN16 float ni4][4];
static F32vec4 q[4][4];

for (int i = 0; i < 4; i++)
Four Fl oat s2F32vec4(q[i], nfi]);

Align scalar data, too!

B
¢ U1
= et Bt

Rules of Good Parallelism

e Maintain the original algorithm
® Process {four} data portions in parallel

e Keep only homogeneous components In
one SIMD operand

e {Quadruple} loop-invariants outside the
loop to create SIMD invariants

e Use SIMD-friendly structure, SoA or Hybrid

2001

Agenda

Exploiting Parallelism

Data Restructuring

Data Compression
Conditional Code with SIMD
Ssummary

Bonus Folls

SIMD-Unfriendly Data Structures

The primary SIMD problem

Results from:
® Interface / API Constraints

e Algorithm Logic
* Legacy Code

Data Processing

A0S

Taming SIMD-Unfriendly Data

“Swizzle” (transform) data at run-time
Pre-swizzle at design/load-time as much as possible
Implement swizzle with SSE / SSE2

Data Provider A0S --> SOA SOA | Data Processing

Pleitel Cojpls lpglef

Data Swizzling

aosl n[0] .
aoslin[1].
aosl n[2] .
aosl n[3] .

Chief SIMD Swizzler: Shuffle

First operand contributes two lower elements,
second operand contributes two higher ones

~mm shuffle ps(a, b, _MM SHUFFLE(3, 1, 2,0))

03..0 03..0 213..0

e Shuffle with itself: total swizzle
~mm shuffle ps(a, a, _MM SHUFFLE(3, 1, 2,0))

Data Swizzling with SIMD: AoS to
SOA

{2

shuffle(3,1,3,1) ‘,\ shuffle(2,0,2,0)

xy10

loadlo

local var-s (registers)

loadlo

Data Swizzling with SIMD: AoS to SoA
(continued)

W2yl o

shuffle(3,1,3,1) shuffle(2,0,2,0)
zZW 32 BeR S o 22 1| 21 7 zw10

loadhi

7
-
©
>
©
O
®

Z\0)

XYZW

To prepare SIMD-friendly data, use SIMD!

memory

A0S to SoA Code

® void XYZW oF32vec4(F32vec4& x, vy, z, w, XYZW aoslin) @
® ©
® F[F32vec4 xyl1l0, xy32, zwl0, zw32; ®
® xyl10 = zwl0 = mm setzero_ps(); ®
® xyl10 = mmloadl pi(xyl0, (__nb4*)& aosin[0]).x); ®
® 7wl0 = mmloadl pi(zwl0, (_ _nb4*)&aosln[0]).2z); ®
® xyl10 = mmloadh _pi(xy10, (__nb64*)&aoslin[1]).x); ®
® zwl0 = mmloadh pi (zwl0, (__nb4*)&(aosin[1]).2z); ®
® xy32 = zZw32 = mm setzero_ps(); ®

xy32 = mmloadl pi(xy32, (__nb4*)& aosin[2]).x);

zW32 = mm | oadl pi(zw32, (__nb4*)&aosin[2]).2z);

xy32 = mm| oadh _pi (xy32, (__nb4*)&aosin[3]).Xx);

zwW32 = _mm | oadh_pi (zw32, (__nb4*)&(aosin[3]).2z);

X = mmshuffle ps(xyl0, xy32, SHUFFLE(Z2,O0, 2,0));

y = mmshuffle ps(xyl0, xy32, SHUFFLE(3,1,3,1));

z = _mmshuffle ps(zwl0O, zw32, SHUFFLE(Z2, 0, 2,0));

w = _mmshuffle ps(zwlO, zw32, SHUFFLE(3,1,3,1));

3-Component AoS to SOA

x1

or or

or

Defining SSE Bit Masks

e No valid f | oat with bit pattern needed?

e Define aligned static array of four integers
e | oad It at runtime as packed f | oat s

e |mplemented as a macro CONST | NT32_ PS

#defi ne CONST_INT32 PS(N, V3,V2, Vi, VO) \
static const MM ALIGNLG Iint ##N]=\

{VvO, V1, V2, V3};/*little endian!*/ \
const F32vec4 N = mmload ps((float*) ##N);

/] usage exanple, mask for elenents 3 and 1:
CONST | NT32_ PS(nmask31, ~0, 0, ~0, 0);

voi d XYZt oF32vec4(F32vec4& x, y, z, XYZ* aosln)
{

F32vecd4 a, b, c;

CONST | NT32_PS(mask 30,

a
b
C

N < X

N < X

~0, 0, 0, ~0); // etc.

_mm | oad ps((float*)aosln);
~mmload ps(((float*)aosln) + 4);
~mmload ps(((float*)aosln) + 8);

(a & mask30) | (b & mask2) | (c & nmaskl);
(a & maskl) | (b & mask30) | (c & mask2);
(a & mask2) | (b & maskl) | (c & mask30);

~mm shuffl e ps(Xx,
~mm shuffle ps(y,
~mm shuffle ps(z,

X, MM SHUFFLE(1, 2, 3,

0));
y, _MM SHUFFLE(Z2, 3,0,1));
Z 2));

MM SHUFFLE(3, 0, 1,

Gatherers: Cross-Half-Moves

Move lower (higher) half of the second operand to
higher (lower) half of the first operand

~mm novel h_ps(a, b)

Scatter-Gathering + Swizzling

X

shuffle(2,0,2,0)

X32 0 x10

movelh movelh (movelh)

(movelh)

load_ss load_ss

local var-s

Chief Unswizzler: Unpack

Two lower(higher) elements from the first operand and two
lo(hi) ones from the second are interleaved

unpack | ow(a, b)

Data Unswizzling with SIMD SoA to AoS

unpack_low

storehi

7
-
©
>
©
O
®

storelo

wl

Data Unswizzling with SIMD SoA to AoS
(continued)

W W2 e Y0 7 |[NZSRZZE 7/

W 0
unpack_hig l‘l \ ‘ unpack_low
N P~
(0

WIS Z SR NZ 72 L | Z WIOREZ0)

storehi

storelo

aosOut

XYZW

-

O

s e, £
@

P =

2001..

SOA to AoS with Streaming Store

shuffle

stream

7
-
©
>
©
O
®

Data Restructuring Summary

e Use SIMD-friendly SoA or Hybrid structures
whenever possible

e Use SSE/2 to swizzle SIMD-unfriendly structures
before processing

e Use SSE/2 to store results of SIMD processing into
SIMD-unfriendly structures (unswizzling)

e | ook for more restructuring solutions in Bonus
Foils!

Agenda

Exploiting Parallelism
Data Restructuring

Data Compression
Conditional Code with SIMD

Ssummary
Bonus Foils

Data Compression with Integers

FP value inside a known range can be mapped into a
compacter int value

' | i
i=i_ +|(f - fmin)D]:”‘aX I]f“” }; for symmetric range: i:{f [—Iw}

max min range

_f f
f=f . +(i —imin)D]fmaX _f”"” ;. for symmetricrange: f =iG3—=
—i. |

maXx min range

Example: -1.0..+1.0 - -/+SHRT_MAX

short s; float f;
S (short)round(f * SHRT_NAX);
f float(s) * (1.0f / SHRT NAX) ;

Application examples: facet normals, lighting normals,

landscape heights... - SIGRAPH

2001

SIMD Short - SIMD Float

Conversion with SSE?2
7 | 00 | 00 | 0]0) | 00 | 00 | 00 | 0]0) | 00 | m |[m7 | m6 [ms | ma [ms| m2|{mi|mo

cmpgt_epil6

116 1S

Data Compression Summary

e Save memory traffic and cache space by
[de]compressing data on-the-fly

e Use SSE / SSEZ2 for type conversions

e Swizzle short integer data before
conversion - achieve wider parallelism

Agenda

Exploiting Parallelism

Data Restructuring

Data Compression
Conditional Code with SIMD
Ssummary

Bonus Folls

Conditions without Branches

(A< B)? C: D //lrenenber: everything packed

0.0 0.0 -35.0 5.0

y/4 /4 y/4

L
00000 || 11111 || 00000 || 11111

Conditions without Branches Code

/Il R=(A<B?C: D

F32vec4 mask = cnplt(a, b);
r = (mask & c¢) | _mmnand _ps(mask, d);

[/ OR, using F32vec4 friend function:
r = select It(a, b, c, d);

Conditional Processing with SSE / SSE2

eScalar oSSE / SSEZ2
If (a <Db) mask = cmplt(a, b)

r = (mask & c)

o

r=d

Utilize data-level and instruction-level parallelism!

Branch Hub: Movemask

JAN 0.9 0.9 -5.0 5.0

F32vec4 mask = cnplt(a, b);

| f (nmove mask(mask)) {
[/ do only if at |east one is true
[/ can be | ogic-conditional here

}

LCdostt 19. T 1

One jump iIs better than many!

Conditional Processing with SSE / SSEZ2,
Movemask

eScalar ©SSE/SSE2, Movemask
mask = cmplt(a, b)

switch (move_mask(mask))
case Oxf:

if (a < b)

r=¢
case 0xO0:

SIMD for Conditional Code Summary

® You can successfully use SSE/SSE2 even
with conditional, branchy code

® Replace branches with logic or
computation

e Reduce total number of branches with
movemask

e | ook for more examples in Bonus Folls

Agenda

Exploiting Parallelism

Data Restructuring

Data Compression
Conditional Code with SIMD

summary
Bonus Foils

What Is i1n Bonus Folils?

Using Automatic Vectorizer
® Compiler can do SSE/SSE2 for you!

More Conditional Code with SIMD

* Abs function, flag accumulation (“clipping™), test
passed counting...

Applying SSE/SSE2 to Scalar Code

* What if algorithm is inherently scalar?
or there are no long data arrays?

e Still get performance with SSE/SSE2!

Summary: Call to Action

e Accelerate all your critical code with SSE /
SSE2 processing

e Make your data SIMD-friendly

e Use SSE / SSE2 for on-the-fly data swizzling
and [de]compression

e Use SSE / SSE2 comparisons & logic to
replace conditional code

e Extend your own SSE/SSEZ2 Toolbox!

http://developer.intel.com/design/pentium4/
http://developer.intel.com/IDS

Bonus Folls

Bonus Folls

Using Automatic Vectorizer
More Conditional Code with SIMD

Applying SIMD to Scalar Code

Using Intel Compiler’s Automatic
Vectorizer

Now that SSE/SSEZ2 is so easy, the compiler
can do it for you!

Steps to using Automatic Vectorizer:

Understand for yourself how to SIMDize
Prepare and align the data structures
Provide hints such as unaliased pointers
Invoke Automatic Vectorizer

SIMDize remaining critical code with Vector Classes and
Intrinsics

Invoking Automatic Vectorizer

-02 -QaxW -Qvec report3

-02 “optimize for speed™
e standard Visual C++* Release build setting

-QaxW ““optimize using SSE and SSE2”

* also invokes Automatic Vectorizer
® auto-versions optimized code for compatibility
® ignored by Microsoft* C++ compiler

-Qvec_report3 “report on vectorization™

See Intel Compiler documentation for more power
options!

Automatic Vectorizer in Action

® void MyV(float* xi, float* yi, float* zi, float* w,6 ®
® float* restrict xo, float* restrict yo, ®
® float* restrict zo, float* restrict wo) ®
® ©
® assunme_aligned(xi, 16); ... // sane for yi,zi,w @
® for (int i = 0; i < ARRAY COUNT; i++) { ®
® float x = xi[i]; float y =vyi[i]; ®
float z = zi[i1]; float w=w]i];
L]LIaSSVIEW]gl‘IIEf‘IE'U;!'].O/ (||X4I|* rraltrlx[?;][O] Ty ’ ITB.tI’IX[B-l[l-l !
. Configuration: Ac3Socd - Windd Release-------—-------------

Jlﬂmmpiling...
1]l AcBSolA.cpp
CrsaserssIdfSpring99-Labl~AoEEob . cppibl) @ (col. 2) remark: LOOP Was VECTORIZED.

Aoxbof.oh] - 0 erroris), U warning(s)

«[*]s Build 4/ Debug % FindinFiles1 3 Firl 4 |

Bonus Folls

Using Automatic Vectorizer
More Conditional Code with SIMD

Applying SIMD to Scalar Code

Implementing Abs with Logic

e Reminder: SIMD FP format

—

1, if negative
O, if non-neg

o

[/ = abs(a)
CONST | NT32_PS(snask,

~(1<<31), ~(1<<31), ~(1<<3l), ~(1<<3l));
r = smask & a;

Flag Accumulation: Original Scalar Code

char clip = 0O;

1 f (v->X < xmn)
clip | = LEFTCLI P;
else if (v->x > xmax)
clip | = Rl GHTCLI P;
1 f (v->y < ynin)
clip | = TOPCLI P;
else i f (v->y > ynax)
clip | = BOITTOMCLI P;

Flag Accumulation with SSE / SSE2

leftclip REREACNROOOIONROLUAON VLI

clip |Fe00R0N OCHICHFCOO00NF 0000

Flag Accumulation with SSE / SSE2 Code

DEFCONST I NT_PS(leftclip, LEFTCLIP);

... [/ DEFCONST for rightclip, topclip, botclip
F32vec4 clip, nask;

_ ml28i iclip;

unsi gned ucl i p;

mask cnplt (sx, ps_xmn);
clip mask & leftclip;
mask cnpgt (sx, ps_xnmax);
clip|= msk & rightclip;
mask = cnplt(sy, ps_ymn);
clip |= mask & topclip;
mask = cnpgt (sy, ps_ynmax);
clip |= msk & botclip;

/[l pack int32 - int8

iclip = (__nml28i &) clip; /| cast type
iclip = mmpacks epi32(iclip, iclip); [/ pack 32 - 16
iclip = nmmpackus epil6(iclip, iclip); // pack 16 > 8

uclip _mm.cvtsi 128 si 32(iclip); /] nove to int

Test Passed Counting

EO)OOO ‘ 11111 H O)OOO ‘ 1 111

movemask

® static const int bitcount[16]
° 0, /1 0

1, // 1 == 0001

1, // 2 == 0010

2, I/

4 [/ 15 == 1111

'
F32vecd4 mask = cnplt(a, b);
npassed = bitcount[nove mask(nmask)];

Bonus Folls

Using Automatic Vectorizer
More Conditional Code with SIMD

Applying SIMD to Scalar Code

Applying SIMD to Scalar Code

SSE can be applicable inside a scalar algorithm
without global parallelization

Accelerate general processing with SSE operations
e SSE registers are more efficient than x87

« SSE divide, square root - rcp, rsgrt
® type conversions - cvtsi2ss, cvt(t)ss2si...

® comparisons - comiss, comisd

Accelerate operations common to all
heterogeneous components

Is It Really-Really Scalar?

e In most cases, can easily load scalar
data into SSE/SSE2 operands

—Load four random 3-comp vectors:

® void XYZToF32vec4(F32vec4& x, y, z, const XYZ* pO, pl, p2, p3) o
{
® CONST_I NT32_PS(n20, 0,~0,0,~0); [// mask for elenents 2, O ®
o F32vec4 a, b, c, d, e; ®
a = _mm.| oadu_ps(&p0- >x); /Il --,2z0,y0, x0
b = mmloadu ps((&l->x) - 1); [/ z1,y1,x1,--
c = (nm20 & a) | andnot(nRO, b); [/ z1,z0, x1, x0
b =(nm0 & b) | andnot(nk0, a); [/ --,y1,y0,--
a = _mm.| oadu_ps(&p2->x); [l --,22,y2, X2
d = _mmloadu ps((&p3->x) - 1); [/ z3,y3,x3,--
e = (nm20 & a) | andnot(nR0, d); [/ z3,z2,x3,x2
d = (nm20 & d) | andnot(nR0O, a); [/ --,y3,y2,--
x = _mmnovel h_ps(c, e); /'l x3,x2,x1, x0
z = _mmnovehl ps(e, c¢); Il z3,z2,21, z0
y = _mmshuffle ps(b, d, _MM SHUFFLE(2,1,2,1)); // y3,y2,y1,y0

Avoiding SIMD Catches for Scalar Data

Example: load XYZ vector as SSE operand

Catch 1: Misalignment

® F32vecd v; XYZ* vec; ®
@ x = mmloadl pi(&ec->x); o
ev = mmnovel h_ps(x, _mmload ss(&ec->z)); e

® |oadlo, loadhi slow when not 8-byte aligned

Catch 2: FP “Junk” data

x = mmloadu ps(&vec- >x),

* Junk data leads to ““special” values in math operations =
slowdown!

Loading XYZ Vector as
SSE Operand, Good Way

F32vec4d v;

XYZ* vec;

v = mml oadu ps(&vec->X);

v = Vv & mask210;

[OR

[/ v = mmshuffle ps(v, v,

[/ MM SHUFFLE(2, 2,1, 0));

e One slow unaligned load, one logic
e Junk data masked out

e Aligned load would be much faster
e Data alignment is still important! g%

Loading XYZ Vector as
SSE Operand, Better Way

F32vecd v, vy, z;

XYZ* vec;

~mm | oad ss(&vec-

~mm | oad ss(&vec-

~mm | oad _ss(&vec-

_mm novel h_ps(v,

~_mmshuffle ps(v, z, $(2,0,2,0));

e Three fast loads, two shuffles

e ~1.3x faster than non-aligned SIMD load
e ~2x slower than aligned SIMD “SIGGRAPH"

2001

SIMD Element Sumup

e Used widely in SIMD-for-Scalar code
e Requires two sequential shuffles

® inline F32vecl sumup(F32vec4 x)

{
X += _mm novehl ps(x, X);
((F32vecl&) x) += mmshuffle ps(x, x, $(3,2,1,1));
return Xx;

}

Parallel Element Sumups

Four element sumups In parallel

® inline F32vec4 sunup(F32vec4 a, b, c, d) ®
® ®
® a = unpack lowa, b) + unpack high(a, b); ®
[l b3+bl, a3+al, b2+b0, az+al
c = unpack lowc, d) + unpack _high(c, d);
[l d3+dl, c3+cl, d2+d0, c2+cO
b = mmnovel h ps(a, c);
[l d2+d0, c2+c0, b2+p0, az2+al
d = mm novehl ps(c, a);
[l d3+dl, c3+cl, Db3+pl, a3+al
a=>b + d;
return a;
}

Vector Normalize, SSE SIMD

e Element sumup considered earlier
e 5 shuffles, 2 multiplies
e Aligning data would speed it up!

® F[32vecd v, s; ®
F32vecl t;
v = mml oadu_ps(inVec);
v = v & mask210;
S =V * V;
t = sumup3(s); [/ sumup 3 lower elenents only
t =rsqgrt_nr(t); // SSE scal ar
v *= mmshuffle ps(t, t, S(0,0,0,0));
_mm st oreu_ps(outVec, Vv);

Vector Normalize, SSE Scalar

e (O shuffles, 6 multiplies, reschedulable loads
® ~20% faster than unaligned SSE SIMD
e ~15% slower than aligned SSE SIMD

F32vecl x, vy, z, t;

_mm | oad_ss(& nVec- >X) ;
~mm | oad_ss(& nVec->y);
~mm | oad_ss(& nVec->z);

X * X +y *y + 2z * z;
rsqrt _nr(t); // SSE scal ar

oI | I 1 T I |

N X F + N X
—~ —~ —~

_mm st ore_ss(&out Vec->x, X);
_mm store_ss(&out Vec->y, y);
_mm store_ss(&out Vec->z, z);

SSE SIMD or SSE Scalar?

e Depends on memory loads to processing
operation ratio

e Aligned load / store are the fastest

© Homogeneous component processing Is
faster with packed operations

® | oad / store of separate components Is
more efficient than unaligned SIMD load

2001

Matrix by Vector, Smart Scalar
__HEn I]

*

SIMD for Scalar Code Summary

e Inherently scalar algorithms also benefit
from SSE / SSE2

e Aligning data is still important!
® Do not tolerate junk data elements

e Use SSE / SSE2 fast operations: reciprocal,
compares, conversions

SIMD Synonyms

Nouns:
e SSE = SSE / SSE2 = SSE2 = SIMD

e “SIMD operand consists of {four} elements”

Adjectives:
e SIMD data = vectorized data = packed data

Verbs:
* SIMDize = vectorize = parallelize

Afternoon Break

Architecture: SIMD computation &
the memory game

Haim Barad
Staff Engineer
Intel Corporation

barad@acm.org

SIMD Computation

e Single Instruction, Multiple Data
e Almost all architectures have It

e Useful for vector style computation

® E.g. Transform four vertices in parallel

/
/P

Streaming SIMD Extensions*
Registers

Eight 4-wide
Single-Precision
FP registers

1-bit sign
8-bit exponent
23-bit mantissa

31 30 23 22

Packed Operations

op is one of
saddps
*subps
emulps
odivps

a3op b3 a2op b2 alophbl a0 op b0

2001,

Horizontal or Vertical?

Horizontal - find parallelism within the
computation

Vertical - use serial task sequence, but

operate on multiple data points

Vertical Is often preferred

Dependencies limit instruction parallelism
® Code development from serial code is easier

Modify data structures to support vertical
parallelism have better cache locality

® “Structure of Arrays” versus “Array of Structures”

SOA versus AOS

e AOS (Array Of Structures)

X0, YO, Z0, NxO, NyO, Nz0, U0, V0,
X1, Y1, Z1, Nx1, Ny1, Nz1, U0, VO, ...

e SOA (Structure of Arrays)

X0, X1, X2, X3, ... YO, Y1, Y2, Y3, ... 20, Z1, Z2, Z3, ...

Matrix Vector Multiply

Typical 3D operation

Load values in SOA format
® XXXX..., YYVY..., 222Z...

Follow with multiply and add operations
xmmoO, [
xmt,
XxmB,

movaps
movaps
movaps
nmovaps
nmovaps

xmml,
X4,

| 1 st +X+ecx] ;| oad X conponents
| 1 st +Y+ecx];load Y conponents
|1 st +Z+ecx] ;|1 oad Z conponents
[esi +nDO] ,M00 n00 nDO0 nDO
[esi +nD1] ;01 nD1 n01 nOl1

2001

Matrix Vector Multiply (cont.)

Accumulate results...
We’ve just done four dot products in parallel!

mul ps xnmi,
mul ps x4,
addps xmm,
novaps xnmni,
mul ps xmni,
addps xnmm,
addps xmm,

LLoop back to pick up next 4 vertices...

, X*nm00 x*nD0 x*nD0 x*n0O0
Yy 01l y*n01 y*n0l1l y*n0Dl
;add the 2 results
[esi +nD2] ;1 oad matri x el enent nD2 (x4)
X8 ,Z2*n0D2 z*nD2 z*nD2 z*n0D2
X il ;add results
[esi +nD3] ; add | ast el enment of matri X

The Memory Party Game

Processing

If you can’t bring data in fast enough or spit it out
fast enough...

e SIMD is of little or no use

* You are now limited by bandwidth!

Invite the data ahead of time...

Prefetch - hides latency by bringing in data before
you need it

Cache latency still exists
e Be careful to prefetch far enough in advance

Watch resource limitations
* Prefetching too much can thrash the cache

e Limitations on number of fill buffers

* Six in recent Pentium® Il Processors
* Qver 20 in Pentium® 4 Processors

Prefetch illustrated

prefetchnta [esi]

System
memory

Prefetching data...

| oop
novaps xmml, [edx + ebx]
novaps xmmP, [edx + ebx + 16]
, Prefetch next iteration data 1 nto cache
prefetchnta [edx + ebx + 32]
, ...performcalculations on this iteration...

add ebx, 32
cnp ebx, buff _size
j1 1 oop

Quick exit from the party...

Streaming stores - stream output data
directly to system memory without
updating caches

Or, write directly to non-cachable memory
such as AGP

Streaming store illustrated

XxmmO
No write allocation*

i
i memory

L1

* |If store was a cache hit,
then data goes to cache
and is not written
directly to memory

novnt ps [esi |

Optimizations Strategy Lab

Haim Barad
Staff Engineer
Intel Corporation

Haim.Barad@intel.com

| ab overview

A simple 3D geometry engine
® Pipeline architecture

e SIMD implementation

Analysis
* Time and event based sampling

® Optimizations to further improve performance

Lab files and options

Main.cpp has options for different pipes
e Scalar vs. SIMD

® Single-pass vs. Multipass
® SOA vs. AOS

Prefetches can be enabled for SIMD pipe
® Put prefetches in soa_SP_SIMD_pipe.cpp

Analysis steps

Run app in VTune under TBS
* Notice hot spots in the profile results

Track down causes
* Cache misses are likely in this app

* Measure with EBS (L2 misses)

Prefetch optimization

L2 Cache misses: SIMD pipe
before prefetch optimization

A ML
et Codgpes e oo

Ll s gy : Cache misses on
: position loads

Allocate for
writing results

Dicablls-clirk. b gl meovm- indomnaiion 8. o end g iy oo i e viees

j:u-| Ak |4.-.-er.:-~| W ||| Shpaaph Lah . [fmcuren b NEn | i || o R Ll TS

L2 Cache misses: SIMD pipe after
prefetch optimization

A ML
et Codgpes e oo

3 ll) o sl 7)) W3 s - : Load latency

IS gone!

We still have
allocate for
writing results

Dicablls-clirk. b gl meovm- indomnaiion 8. o end g iy oo i e viees

j:u-| Ak ||.a|.-r|.-r-: ol s |||_ Sigganph Lk - VTam "

Processor & Platform Analysis Tools

Dean Macri
Technical Marketing Engineer
Intel Corporation

dean.p.macri@intel.com

What We’ll Talk About Today...

e Platform performance issues
e Optimizations 101

e Finding the Hot Spot?

e Analysis techniques

e Try it out! (lab)

Platform Performance Issues

Software increasingly needs to be multi-platform
* You don’t always develop on your target machine!

Platforms vary in many ways
® CPU horsepower, ISA, memory, graphics adapter

Optimizations should be focused where they can
add the most value!

* Once you’ve got a solid algorithm, optimize to the target
platform

Typical Excuses of Sub-Optimal
Performance

1.
. Drivers

Not My Code!

0N
. Compiler
. Processor

Typical Causes of Sub-Optimal
Performance

Poorly written code

* Function calls for small, high frequency routines

Inefficient use of data
* Bad cache coherence, data alignment, etc.

Poorly matching code to underlying platform
/ processor architecture

‘gotchas’ In specific architectures
Find the bottleneck!

Optimizations 101

Step 1: The Benchmark
* Run the benchmark and record the performance.

Step 2: Find the hot spot

* Run the benchmark using a profiler to identify

which areas of the application are consuming the
most time.

Step 3: Optimize and verify the
Improvement

Use the Funnel Approach

Visible Differences

, — Integrated in app.
1,000 View: - Erame rate; responsivVeness

Whole System System Monitor,
IPM, Vtune,

100" view' — sy stem-widie' events SProf

Whole Application Vtune, NuMega

10" view' — Application-Speciiic TrueTime, GProf

EVENTLS
Single function Vtune, PCL, PerfAPI, Roll

L VIew: = tonlgye own < SHGGIRAPH
svents 200 1,100 rcecre

1000’ View Monitoring

T‘-I-‘pi: ciamped o1 30 ips] _ ksimai epabled
oo iy rames / Se¢ q Other Metrics:

orew 1 frame 360 \
e e Triangles Rendered / = Object
L o teture Frame count

e Memory

~ Visibility S © etc.

=

100’ View Monitoring

Vtune - Shows all the software
running in the system. Larger
bars are consuming more time

System Monitor --
Displays events for
various objects over time.

100’ View Monitoring

Vtune - Chronologies displays
events over time like System
Monitor

Sprof - Unix/Linux tool for
profiling the system and
applications

2001

3rd Party Hardware Counters for
Chronologies

System Monitor supports 3rd party counters
e Special purpose .DLLs for accessing hardware

VTune iIs extensible by 3rd parties
e Simple SDK available for creating .DLLs

Graphics IHV’s can use to optimize titles for their
hardware

* Give performance .DLL to title ISV

® |SV uses VTune/SysMon to get max performance

2001

10’ View Monitoring

There are profiling counters

built into most processors T o o VST T PR

Can sample on more than
just time!

® L1 and L2 cache misses,
Branch mispredictions,
partial register stalls

Can also compute ratios

* clocks per instructions, bus
utilization, data access
versus cache misses

Fracazsor Events for EBS

Senbach | wwrk g Ioe | vend4 geed Samplneg

Call Graph Profiling

Goal iIs to get function call graph and call list
* Parents and children

* Time for 1tself and itself + all children

- Flnd the crltlcal path Critical
A P . "M path is blue

1’ View Monitoring

Roll your own
* Write a privileged driver

® |nstrument your code

Use a pre-rolled tool
* IPM

* Vtune API
® PCL - Performance Counter Library

* PerfAPI

Controlling Profiling

Add code to configure, start, and stop
profiling within your app
* specific to VTune, IPM, PCL, PerfAPI, etc.

Rebuild your app and run it to collect data

Use a GUI or database viewer to analyze the
results

The Start, Stop, and Config APIs

Profile code without the GUI

Data file Is generated which is imported into VTune
for analysis

Great for testing multiple configurations
Include VTuneApi.h, link VTuneApi.lib

I nt Vt Start Sanpl i ng(coment string);

I nt Vt StopSanpling (void);

I nt Vt ConfigSanpling(options, interrupt type,
Sanpl i ngl nterval I nM croSec, Sanpl eBufferSi zel nByt es,
MaxSanpl es, Dur ati on, St art Del ay, Sanpl esFi | eNane,
Event Code, EBSSanpl eAfter);

Questions?

[)‘~
4

Try It Out - Labs

Optimizations for Handheld &
Embedded Devices

Haim Barad
Intel

Handheld platforms (PDAS)

PDAs (e.g. Palm Pilot, Compaq iPaq)
Embedded CPUs = low power = battery life!

Performance is now an important factor
* Video

e 2D players (e.g. video and Flash)
* 3D apps/games

® Speech recognition

Performance factors

This class of chips (e.g. StrongARM)
* Have no floating point hardware!

* Have no integer divide!
* Smaller caches than desktop CPUs

e Multiply units - “early out” (small finishes faster)

Performance Roadmap

Intel XScale
e Ramp to 1GHz (demonstrated at Spring IDF 2001)

* New architectural features

* MAC w/40-bit accumulator
* Manufactured on advanced process

* High frequency, low power!

Platform factors

Small displays (320x240)

* Smaller textures are required (mip mapping)
* Lower resolution models are ok

* Landscape mode has linear memory access

Small depth of display (up to 16-bit)

* Reformat and resize textures

Optimizations Steps

No floating point - CRITICAL STEP!!!
Emulation is VERY slow (~50x)

Use fixed point instead
Smaller operands finish faster than larger

Be careful of precision and dynamic range

Optimizations Steps (cont)

Be careful of cache sizes
® Current StrongArm has 16K/8K (1/D) caches

e XScale will have 32K/32K/2K (1/D/mini-D) caches

Be careful of compiler generated code

® Tools are not yet as mature as desktop versions

* Many OSs to support

Optimized libraries are available
® Intel’s Integrated Performance Primitives (IPP)

2001

Example of power and performance

POWER-PERFORMANCE COMPARISON

Intel™ XScale™
Microarchitecture

Inted™ StrongARM*
Techmakogy

I
P EREEF RSP

M@
g
#H Fh RS

A RETFEN

[
LR R R L 1-

213 Mz 175 bz 150 Mz 00 MHz B0 MEE BOO Mz
2210V h AT). 75 @100 1.3V 1.6V

m MIPS . wans

Power Consumption (Watts)

A Small Demo

Course summary

Online References

A master link page for this course Is at
® optimizations.org

Check for updates to materials!

